Advertisement
News
Advertisement

IBM Unveils Cognitive Computing Chips

Mon, 08/22/2011 - 6:38am

IBM Unveils Cognitive Computing Chips 

IBM researchers unveiled a new generation of experimental computer chips designed to emulate the brain's abilities for perception, action and cognition. The technology could yield many orders of magnitude less power consumption and space than used in today's computers.

In a sharp departure from traditional concepts in designing and building computers, these neurosynaptic computing chips recreate the phenomena between spiking neurons and synapses in biological systems, such as the brain, through advanced algorithms and silicon circuitry. Its first two prototype chips have already been fabricated and are currently undergoing testing.

Called cognitive computers, systems built with these chips won't be programmed the same way traditional computers are today. Rather, cognitive computers are expected to learn through experiences, find correlations, create hypotheses, and remember -- and learn from -- the outcomes, mimicking the brains structural and synaptic plasticity.

Neurosynaptic Chips 

While they contain no biological elements, the cognitive computing prototype chips use digital silicon circuits inspired by neurobiology to make up what is referred to as a "neurosynaptic core" with integrated memory (replicated synapses), computation (replicated neurons) and communication (replicated axons).

There are two working prototype designs. Both cores were fabricated in 45 nm SOI-CMOS and contain 256 neurons. One core contains 262,144 programmable synapses and the other contains 65,536 learning synapses. The IBM team has successfully demonstrated simple applications like navigation, machine vision, pattern recognition, associative memory and classification.

The overarching cognitive computing architecture is an on-chip network of light-weight cores, creating a single integrated system of hardware and software. This architecture represents a critical shift away from traditional von Neumann computing to a potentially more power-efficient architecture that has no set programming, integrates memory with processor, and mimics the brain's event-driven, distributed and parallel processing.

IBM's long-term goal is to build a chip system with ten billion neurons and hundred trillion synapses, while consuming merely one kilowatt of power and occupying less than two liters of volume.

Why Cognitive Computing

Future chips will be able to ingest information from complex, real-world environments through multiple sensory modes and act through multiple motor modes in a coordinated, context-dependent manner.

For example, a cognitive computing system monitoring the world's water supply could contain a network of sensors and actuators that constantly record and report metrics such as temperature, pressure, wave height, acoustics and ocean tide, and issue tsunami warnings based on its decision making. Similarly, a grocer stocking shelves could use an instrumented glove that monitors sights, smells, texture and temperature to flag bad or contaminated produce. Making sense of real-time input flowing at an ever-dizzying rate would be a Herculean task for today's computers, but would be natural for a brain-inspired system.

IBM's cognitive computing chips were built at its chip-making facility in Fishkill, NY and are currently being tested at its research labs in Yorktown Heights, NY and San Jose, CA.

 

Advertisement

Share this Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading